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Experiments indicate that turbulent free convection over a horizontal surface (e.g.
Rayleigh-Bénard convection) consists of essentially line plumes near the walls, at
least for moderately high Rayleigh numbers. Based on this evidence, we propose
here a two-dimensional model for near-wall dynamics in Rayleigh-Bénard convection
and in general for convection over heated horizontal surfaces. The model proposes a
periodic array of steady laminar two-dimensional plumes. A plume is fed on either
side by boundary layers on the wall. The results from the model are obtained in two
ways. One of the methods uses the similarity solution of Rotem & Classen (1969) for
the boundary layer and the similarity solution of Fuji (1963) for the plume. We have
derived expressions for mean temperature and temperature and velocity fluctuations
near the wall. In the second approach, we compute the two-dimensional flow field
in a two-dimensional rectangular open cavity. The number of plumes in the cavity
depends on the length of the cavity. The plume spacing is determined from the critical
length at which the number of plumes increases by one. The results for average plume
spacing and the distribution of r.m.s. temperature and velocity fluctuations are shown
to be in acceptable agreement with experimental results.

1. Introduction

This paper is concerned with the near-wall dynamics of turbulent free convection
over horizontal surfaces. This is taken to include steady-state convection between
horizontal plates kept at constant temperatures (the classical Rayleigh-Bénard con-
vection), unsteady convection between two horizontal plates with one of the plates
insulated and convection over a horizontal plate kept in a vast expanse of stationary
fluid. We do not distinguish between the near-wall dynamics that occur in these
various flows. This is analogous to stating that near-wall flows in turbulent pipe flow
and in the turbulent boundary layer are similar.

Turbulent free convection of this type, especially Rayleigh-Bénard convection has
been studied extensively (Townsend 1959; Deardorff & Willis 1967a; Tanaka &
Miyata 1980; Adrian, Ferreira & Boberg 1986; Castaing et al. 1989). See Siggia
(1994) for a recent review. In this type of flow, large thermal gradients exist near the
wall(s) while near isothermal conditions prevail away from the wall(s). Experimental
evidence suggests the convective heat transfer near the wall(s) is either from thermals
(intermittent release of hot fluid) or essentially line plumes (continuous release of hot
fluid from a line) which move randomly. Away from the wall(s) rapid mixing leads
to near-isothermal conditions.
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FIGURE 1. A typical planform structure obtained on a liquid crystal sheet pasted on the bottom
surface of a Rayleigh-Bénard convection cell (at Ra ~ 2 x 107). The fluid is water. The temperature
difference between the bottom and top surfaces was 5 °C and the cell height was 5 cm. The dark
lines indicate higher temperature and represent sites from where plumes rise. The length of the dark
line at the top left-hand corner is D/2. The liquid crystal sheet is sensitive between 35 °C and 36 °C.

Sparrow, Husar & Goldstein (1970) observed thermals releasing from fixed sites
in their experiments over a heated horizontal surface unconfined at the edges. Chu
& Goldstein (1973) also observed thermals releasing from fixed sites in a regular
Rayleigh-Bénard cell at a Rayleigh number (Ra) of 2.23 x 10°. They are seen as blobs
getting detached from the boundary layer (figure 8 in their paper). The bulges in the
boundary layer remain straight and fixed during and before the detachment.

Howard (1966) had proposed a model for intermittent release of these thermals
(see for example Turner 1973). He assumed that dynamics of the flow close to the
wall can be modelled as a periodic growth and eruption of a conduction layer at
the wall. The conduction layer grows by diffusion, becomes unstable and erupts
at a Rayleigh number, based on the conduction layer thickness, of around 1000;
then a new conduction layer begins to form and the cycle repeats. The eruption of
the conduction layer results in the release of a thermal. This simple model predicts
average and r.m.s. temperature distributions close to the wall, the Nusselt number
and the average time period between the release of thermals.

However, line plumes seem to be the predominant structure in Rayleigh—Bénard
convection for Ra in the range 10°-10% and in convection over horizontal plates for
Ra > 10® as indicated by a large number of experiments (Chu & Goldstein 1973;
Spangenberg & Rowland 1961; Adrian et al. 1986; Tamai & Asaeda 1984; Theerthan
& Arakeri 1994; Goldstein & Volino 1995). The line plumes randomly move about
on the surface, inclined forward in the direction of motion. Adjacent plumes merge
with one another most of the time and rarely disappear (Theerthan & Arakeri 1994).
Rayleigh-Bénard convection (at Ra ~ 2 x 107), as visualized by a liquid crystal sheet
on the bottom surface is shown in figure 1. The cause for the movement of the plumes
and how the velocity of this movement scales are still unclear. Asaeda & Watanabe
(1989) report unsteady temperature signals from a probe placed vertically above a line
plume. They ascribe the unsteadiness to thermals released from the plume. However,
flapping of the plume could cause similar unsteadiness.

Recent studies, with water as the working fluid, by Zocchi, Moses & Libchaber
(1990) at high Ra ~ 10°, in a cell of aspect ratio (AR) one and Gluckman, Willaime &
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Gollub (1993) at Ra in the range of 107 to 3 x 103, in cells of aspect ratio close to one
and less than one, reveal different types of structures. They used encapsulated liquid
crystal particles which change colour with temperature to visualize the thermal field
and described the life cycle of large events at fairly large Rayleigh numbers. Erupting
warm plumes break off from the lower boundary layer and traverse the cell to the
upper boundary layer where they excite waves. The waves can lead to the formation
of cold plumes which then descend to the lower boundary layer, where they again
excite waves. These authors describe the existence of ‘spiralling swirls’ or mushroom
types of structures, which are basically regions of the thermal boundary layer that
have been folded into a spiral. Zocchi et al. (1990) report that at Ra = 2.4 x 103
spiralling swirls are not observed but only plumes. The existence of large-scale flow
(that is, spanning the the entire cell width and height) as reported in these two papers
seems to make the flow field different from the observations in large-4R cells.

In the Rayleigh-Bénard convection literature two ‘classes’ of Nusselt number (Nu)-
Rayleigh number (Ra) correlations have been proposed. One is from Globe & Dropkin
(1959)

Nu = 0.069Ra'/3pro07*

(The quantities have the usual definitions: Nu = hD/k;, Ra = gB(2T,)D*/va, Pr =
v/a, where h is the convective heat transfer coefficient, D is the distance between
the plates, 2T, is the difference between bottom surface temperature and top surface
temperature, k; is the thermal conductivity, g is the acceleration due to gravity, « is
the thermal diffusivity, § is the volume coefficient of thermal expansion and v is the
kinematic viscosity of the fluid.) This correlation implies that heat flux is independent
of distance between the plates. The other correlation based on recent experimental
data (Chu & Goldstein 1973; Castaing et al. 1989; Wu & Libchaber 1992) covering
a wider range of Rayleigh numbers (10*-10°),

Nu = CRd*",

implies that heat flux reduces with increase in distance between the plates. C depends
on aspect ratio of the cell and the Prandtl number. It is of interest to note that Wu &
Libchaber (1992) found that C = 0.146 for AR = 6.7 and C = 0.22 for AR = 1.0 but
the exponent was the same for both the aspect ratios. Also in the AR = 6.7 case the
above correlation was valid for Ra > 10* (much before the soft-to-hard turbulence
transition at Ra ~ 10® (Wu & Libchaber 1992)).

1.1. Convection over a horizontal plate

Another common configuration, though less extensively studied than Rayleigh—
Bénard convection, is convection over a large heated horizontal plate. Two papers are
of interest to us. One is by Husar & Sparrow (1968) who visualized the convection in
water over different planform shapes and covering a range of Rayleigh numbers. The
other is the recent paper by Kitamura & Kimura (1995) who measured heat transfer
rates and visualized the surface temperature using liquid crystal sheets on rectangular
plates. At large enough Ra the flow near the surface consists of (i) a laminar boundary
layer near the edge followed by (ii) longitudinal rolls perpendicular to the edges and
(iii) in the central region a flow structure very similar to what is observed in turbulent
Rayleigh-Bénard convection: randomly moving line plumes. In region (iii) the local
heat flux is observed to be independent of distance from the leading edge.
Visualizations from the side were reported by others (Rotem & Classen 1969; Fuji
& Imura 1972; Pera & Gebhart 1973a,b). They reported that laminar boundary layers
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exist near the plate edges and then break down or separate when the value of Gri?

exceeds about 80 (Gr, is the Grashoff number based on distance from the leading
edge). Rotem & Classen (1969) integrated the governing equations for laminar flow
using similarity methods and visualized experiments in air using a semi-focusing
schlieren apparatus.

1/3

The Nu-Ra correlation for convection over a horizontal plate is Nuy, = 0.12Rq,,
(Kitamura & Kimura 1995) in region (iii). Here Nuj, and Raj;, are based on the
difference between plate temperature and ambient temperature as temperature scale;
the subscript hp is used to denote horizontal plate. Since Nu ~ Ra'/?, the heat flux
does not depend on the length scale.

The similarity of the flows near the wall in Rayleigh-Beénard convection and in
convection over a horizontal surface is further strengthened by nearly the same
heat fluxes in the two cases. Using the correlation of Globe & Dropkin (1959) for
Rayleigh-Bénard convection and that of Kitamura & Kimura (1995) for convection
over a horizontal surface we obtain the heat flux

1/3
q=CT, ks (if)

with C = 0.157 for Rayleigh-Bénard convection and 0.12 for convection over hori-
zontal surface. Note that T, is the difference in temperature between the wall and
the ambient or core. (As discussed above experiments in Rayleigh—Bénard convection
show the exponent to be closer to 2/7 than 1/3. In any case, the heat flux calculation
for the Rayleigh numbers of interest does not change much.)

1.2. Outer flow

Similar to the wall-bounded turbulent forced flows we have two scales in turbulent
convection: the inner or wall scale (U,, Z,,) and the outer scale (U,, Z.). These are
shown schematically for the two flows we are considering in figure 2. Till now we have
been discussing the near-wall flow, which is the main focus of the present paper. A
relevant question, raised by the recent high Rayleigh number experiments in helium
(Castaing et al. 1989), is how are the two flows coupled. In particular how does the
‘wind’ (U, affect the near-wall flow.

In Rayleigh-Bénard convection the outer velocity scale is the Deardorff (Deardorff
1970) scale denoted by W.; W. increases in relation to the inner velocity scale as Ra
increases: W. /U, ~ Ra"? (where n is the exponent in the Nu—Ra correlation) (see
§1.3). As, for example, the distance between the plates is increased keeping the other
quantities (v, o, 2T,,) constant, the outer velocity increases consistent with the fact that
fluid has a larger vertical distance over which it can gain velocity due to buoyancy.
Thus at some high enough Ra the outer flow will start to affect the dynamics near
the wall (and is believed to be related to the transition to ‘hard turbulence’). This
Ra appears to be of the order of 108 (Wu & Libchaber 1992). Indeed, at very high
Ra, when W, > U,, only the outer flow will be buoyancy driven and flow near the
wall will be one of ‘forced’” convection (see Siggia 1994) with temperature being just
a passive variable.

The effect of the outer flow is still unresolved. One hypothesis, motivated by n being
less than 1/3, is that the outer flow stabilizes the boundary layer leading to lower heat
flux with increased Ra (Castaing et al. 1989). Experiments and numerical simulation
of natural convection flows with superimposed shear (convection on inclined plates,
for example) show formation of ‘longitudinal rolls’. Whether the longitudinal rolls
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FIGURE 2. (a) Schematic of Rayleigh-Bénard convection showing plume structure near the walls. We
find the average plume spacing is about 50 Z,, and height of the plume region is about 40 Z,,. The
outer flow eddy is shown having a velocity U, which scales with W.. (b) Natural convection over
a heated horizontal plate. Region E is the edge affected zone which contains a laminar boundary
layer and longitudinal rolls. In the central region C, near the surface, the plumes structure is same
as in (a). The outer flow with velocity U, is due to the turbulent plume.

exist in high Rayleigh number convection is not clear; at least they are not observed
in flow visualization experiments of Zocchi et al. (1990).

For convection over a horizontal plate from flow visualization the outer flow ap-
pears to be a ‘turbulent’ boundary layer (to our knowledge no velocity measurements
have been made for such flows) (Kitamura & Kimura 1995; Fuji & Imura 1972).
However, no outer velocity scale similar to the Deardorff scale has been proposed
for this configuration. It is of interest to note here that Kitamura & Kimura (1995)
have observed the line plumes to become aligned parallel to the longer dimension in
convection over the 1500 x 500 mm plate. They have used 250 mm high fences along
the longer sides in their experiments. The fences seem to ‘direct’ the outer flow which
in turn causes the observed alignment of the plumes.

1.3. Scaling
The two scaling variables — inner and outer — in Rayleigh-Bénard convection were
introduced by Townsend (1959) and Deardorft (1970).
Townsend’s scales pertain to the conduction layer close to the boundaries. In the
conduction layer, diffusion is important and the relevant physical variables are o, v,
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(Bg), and Q,, the kinematic heat flux (= q/pC,) respectively. Dimensional analysis
gives Townsend’s scales for velocity, temperature and length:
W() = 0 1/43 60 = QO 5 Z() = - .
(gBQo%) W W
Alternatively with T,, as the independent variable instead of Q, we get the following
inner scales for velocity, temperature and length:

1/2
U, = (gBT.)"? )8, 0, = T,, zw=(°‘3

Equal ‘weight’ has been given almost arbitrarily to v and o. Clearly each of the terms
may be multiplied by any power of Prandtl number. It would be desirable, if possible,
to incorporate the correct Prandtl number dependence in each of the scales. This
point will be discussed later in the paper. We use U,, 6,, and Z,, or Townsend’s scales
to normalize the results.

Far from the boundaries, in the interior, heat is transferred mainly by convection,
in the presence of a small temperature gradient. This region occupies most of the
distance between the plates. Here the relevant physical variables are Q,, (fg) and Z.
(Z. = D in Rayleigh-Bénard convection). The scales for velocity, temperature and
length, first introduced by Deardorff (1970) are

Q,
W* ’
As this layer is considered inviscid in the absence of any kind of diffusion, a balance
of kinetic energy and the potential energy would give the above set of scales.
It is useful to list the relations between the various sets of scales:

Z./Z,=(RaNuPr)"* 0./0,=(RaNuPr)y"V2 W./W,=(RaNuPr)"/"2.

Furthermore,

Z..

W. = ($g0,2.)"", 0. =

1/3
o s O Nu?
W. = 2 (RaPrN A (L
z, RaPrNu ™ 3 (RaPr

The relationship between the two wall layer scales can be written as

Ra —l/1z Ra Pr\'* Ra Pr3\ "
Zyllo =\ 5537 > 20, 00 = s U/ W=\ 57~ .
/ (Nu3 Pr3 16) / ( Nu ) / (Nu3 16)

1.4. Models for turbulent flows based on coherent structures

No satisfactory theory or model has been proposed for the near-wall flow structure
in turbulent convection over a heated surface. Howard’s theory is for intermittent
eruption of thermals which, however, is not often observed in experiments. Various
power laws, based on mixing length arguments, have been proposed for the variation
with distance in the vicinity of the wall of mean temperature and temperature
fluctuations (Kraichnan 1962; Malkus 1954). These theories, however, have not found
experimental verification (see for example Somerscales & Gazda 1969). The aim of
this paper is to propose a model for the near-wall structure and calculate distributions
of mean temperature, r.m.s. fluctuations of temperature and of the horizontal and
vertical components of velocity. The region we are considering is the conduction layer
and the plume region (what is called the mixing zone by Castaing et al. 1989). The
basic idea is that we model the turbulent flow near the wall as an array of ‘coherent
structures’. The coherent structure we recognize from experiments is the line plume.
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We first briefly review similiar models which have been suggested for other turbulent
flows. The largest number is perhaps for the so-called sublayer streaks or sublayer
vortices observed in wall-bounded turbulent flows (turbulent boundary layer, turbulent
pipe flow, etc.). Coles (1978) modelled the flow as a periodic array of steady streamwise
vortices (secondary flow) superposed on a base flow. He assumed the spacing of the
vortices to be 100 wall units which is the experimentally observed mean value. The
amplitude of the secondary motion was determined to fit measured profiles near the
wall of mean velocity and velocity fluctuation.

More sophisticated models for the sublayer flow have been proposed to explain
the dynamics (bursting and sweep phenomena) and the structure of the flow. These
include the models based on proper orthogonal decomposition (POD) (Lumley 1967;
Aubry et al. 1988; Sanghi & Aubry 1993) and on linearized Navier—Stokes equations
(e.g. Landahl 1990). All of them look at only the sublayer with the interaction with
the outer flow modelled in some way. An interesting variant has been the minimal
flow unit (Jiménez & Moin 1991) — the smallest unit of flow that can be turbulent
and also represent the important processes.

Models have also been proposed for the fine scales of isotropic turbulence in
an effort to recover the Kolmogorov k=3 scaling for the energy spectrum and to
understand the mechanism of balance between vorticity production through straining
and dissipation of viscosity (see Townsend 1951; Lundgren 1982; Pullin & Saffman
1993 and references therein). Many of them are vortex based models using spatial
ensembles of small-scale structures represented by local solutions of the Navier—Stokes
equations. Lundgren (1982) showed that an ensemble of slender nearly axisymmetric
spiral vortices embedded in a strain field predicts the Kolmogorov scaling. Pullin &
Saffman (1993) calculate higher-order one-point velocity derivative statistics using
this model and assuming an ensemble of randomly oriented vortices.

Besides making simplifying assumptions, models for both the sublayer and the
fine scales of isotropic turbulence depend on experimental or DNS data to make
quantitative predictions. For example, Coles (1978) uses the experimentally observed
value of 100 wall units for spacing between the vortices and in the Lundgren—
Townsend model used by Pullin & Saffman (1993) parameter values are chosen to
give correct predicted values of Kolmogorov prefactor and skewness. It is desirable a
model make quantitative predictions, be simple and contain the essential physics. Its
value increases if it is based on local solutions of the Navier—Stokes equations, because
then, at least locally, the balance of various forces is exact. It is noteworthy that these
models have been proposed for the small scales with the effect of the flow due to
large scales incorporated in some way. In a sense the ‘solutions’ at the smaller scales
are laminar and thus are amenable to such modelling, i.c., as ensemble of structures.

1.5. Present formulation

Coming back to the flow we are modelling, i.e. near-wall flow in turbulent free
convection over a horizontal surface, the questions (as in the sublayer) are:
what is(are) the basic coherent structure(s)?
what is their role?
how are they maintained?
and regarding the model itself the questions are:
what are the assumptions?
what are the inputs to the model?
As mentioned above we assume the coherent structure to be a line plume. In the real
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FIGURE 3. (@) The present model: a periodic array of two-dimensional plumes. (b) The solid line
is the approximation of (a) that is solved using the similarity solution for plume (P) and laminar
boundary layer (B) (see text for an explanation). The similarity solutions are shown as dotted lines.
(c) Computational domain and the flow structure when one plume is present.

flow the plumes are randomly spaced about some average value. They presumably
have a distribution of strengths and they move about (on the horizontal surface). We
model the flow by a periodic array of two-dimensional steady laminar plumes with a
spacing of /. (see figure 3a); assumptions and limitations of the model are discussed
below. The flow consists of three regions: (I) Inflow of core fluid with temperature
T,, (II) boundary layer flow and (III) a plume with fluid being fed by the boundary
layers on either side. The point at which the boundary layer becomes a plume may
be expected to occur when the boundary layer becomes unstable.

We calculate the flow field using two methods. In the first method we combine the
similarity solution of Rotem & Classen (1969) for the boundary layer (region II) and
the similarity solution of Fuji (1963) for the plume (region III) (figure 3b). Note that
Rotem & Classen’s (1969) solution is for a boundary layer starting from an edge
and thus figure 3(b) is not a true representation of the model given in figure 3(a).
In the second method we compute the flow field in a two-dimensional cavity of
height H and length L (figure 3¢). The bottom wall is at constant temperature T,
and satisfies the no-slip condition. The sidewalls are adiabatic and allow slip. The
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computation is carried out for two fluids: water and air. The numerical simulation
is an exact solution of the model whereas the first method gives an approximate
solution.

The main input to the model is the plume spacing (4.). In the two methods we
use to calculate the flow the plume spacing is obtained in two different ways. In the
method based on similarity solutions we calculate the plume spacing by equating
the heat flux obtained from the model to the heat flux given by a standard Nu—
Ra correlation. The numerical simulation gives an important result that there is
a maximum distance between plumes. An increase in spacing between two plumes
greater than this maximum value gives rise to a third plume. We choose the plume
spacing 4. equal to half the maximum distance.

From the flow field we calculate the heat transfer rate and profiles of mean
temperature and r.m.s. of temperature fluctuations and of the horizontal and vertical
components of velocity. The means are calculated by averaging over one wavelength.
The mean, denoted by angular brackets ( ), of any variable ¢ is

Iz
W =5 [ oxzax; (1)
the r.m.s. of the fluctuation, ¢'(X,Z) = ¢ — (¢) is given by
S /2
\1/2 1 [~ ’2dX)1 2
W= (5 [ . @

In an experiment usually a fixed probe is used and temporal averages are taken. The
variation in the measured quantity with time will be due to the plumes randomly
moving about. In a random field an average over several simultaneous measurements
in a horizontal plane (spatial average) will also give the same value as the temporal
average from a fixed probe. In the real flow the plumes will be randomly oriented
on the horizontal surface. Equations (1) and (2) are the spatial averages for the
two-dimensional array of plumes of the model. The assumption of the model is that
flow field associated with the plume in the two-dimensional array is same as that
associated with the plume in the real flow. In the model, of course, the unsteady flow
due to the lateral movement of the plumes is not accounted for.

A number of assumptions have been made in the model. The assumption of laminar
flow is justified in that we are dealing with near-wall flow where viscous effects are
important. The Reynolds number based on the conduction layer thickness and the
maximum of r.m.s. of horizontal velocity fluctuations (which occurs close to the
heated wall) is around 10. The justification for using a two-dimensional model for
a three-dimensional flow is that since the basic element is a line plume the flow at
least locally is two-dimensional. Besides, visualizations show that often neighbouring
plumes are nearly parallel. Perhaps the most serious shortcoming of the model is not
incorporating the lateral motion of the plumes. However, a rational approach is not
possible in the absence of a clear understanding of the cause of the motion. As we
shall see the results show that the omission is perhaps not that serious.

Another assumption (which as argued above, is valid for moderate Rayleigh num-
bers) is that the outer flow does not influence the flow near the wall. A similar
debate has been going on in the case of turbulent boundary layers. For example, is
the bursting phenomenon in the sublayer influenced or caused by the outer flow?
Only the recent analysis of DNS data (Brooke & Hanratty 1993; Bernard, Thomas
& Handler 1993) seems to have somewhat resolved the issue.
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In the model we assume the plume spacing to be a single (non-dimensional) value.
The model can be extended to include a distribution of plume spacings. The effect of
plume spacing on the results is briefly discussed in §4.

The paper is organized as follows. The calculation of the flow based on similarity
solutions is given in §2. Numerical simulation of the model is given in §3. The results
along with comparison with experimental results are presented in §4 followed by
discussion in §5. Details of the calculation based on the similarity solutions are given
in Appendices at the end of the paper.

2. Calculations from similarity solutions

The flow field in the boundary layer (region II) is calculated using the similarity
solution of Rotem & Classen (1969) and in the plume (region III) using the similarity
solution of Fuji (1963); flow in region I is obtained from continuity as shown in this
section. The hot plate is at a temperature T,, and the core fluid is at a temperature
T, which without loss of generality is taken equal to 0. The critical length at which
the boundary layer turns into a plume is A./2. The amount of heat required for
the plume solution is equated to the heat gained in the two boundary layers by the
fluid. The virtual origin for the plume calculated using the mass flux in the boundary
layers comes very close to the horizontal boundary. Details of the derivations for the
boundary layer are given in Appendix A and for the plume in Appendix B.

2.1. Boundary layer
Rotem & Classen (1969) have presented solutions in terms of the similarity variable

—2/5
n= <Z> Ra’Pr='5 (X) : (3)
Ae ¢ Ae

where the horizontal length scale is chosen as /./2 in the present paper. Here X
is in the horizontal direction and Z is in the vertically upward direction. Gr, =
gB(4./2)*T,/v?. The Rayleigh number based on the length scale /., Ra,, is then
equal to 8Gr. Pr. The thermal boundary layer thickness, A, is given by,

A/l = naRa; PPrA(X /2.7 (4)

where 7, is the point where the non-dimensional temperature 8 = T/Tw = 0.02
(Rotem & Classen 1969 define boundary layer thickness this way and we retain it).
The value of the similarity variable # at X = 4./2 is

Z

c

Let A. be the thermal boundary layer thickness at X = 4./2. Hence, using equations
(3) and (4), we find

Ra;, = 8Ra}*Pr=3/y %, (6)

(6) gives the relation between plume spacing and the critical boundary layer thickness
(A.). The model requires the value of Ra,, to be specified for subsequent calculation.
This is done in §2.5.

The mean of any quantity is obtained by taking the spatial average over one
period or wavelength (equation (1)). In terms of the similarity variable the mean of
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a variable ¢ is

AN .

@=5(2) ralPr [ oman )
c e

Knowing temperature and velocity from Rotem & Classen (1969) and using (7) we

can derive expressions for distributions in the boundary layer of mean and r.m.s.

temperature fluctuations and r.m.s. of horizontal velocity fluctuations. Details of the

derivation are given in Appendix A and the final expressions are given in §2.4.

2.2. Heat flux
The average heat flux is given by
22/3 _
() = =222y () v TE RGPS H ), ®

The amount of heat (W m™!) that feeds the plume is (g)A..
The Nusselt number for Rayleigh-Bénard convection is given by
D 5 21/15
Ny~ oD 5x

= = H'(0)Ra; /" Pr~'5Ra'’? 9
2T, ks 6 (O)Ra, " Pr= T Ra ®)

where, as mentioned earlier, Ra = gf2T, D3 /va is the Rayleigh number based on D,
the distance between the plates, and the temperature difference between the plates
2T,. In convection over a horizontal surface with temperature difference taken as that
between the plate and ambient fluid Nu will be the right-hand side of (9) multiplied
by 243

2.3. Plume

The flow field in region III (see figure 3) is calculated using the similarity solutions
of Fuji (1963) for a laminar line plume. The flow in the inflow region (region I) is
calculated from continuity. The mass flux at any horizontal cross-section Z (includes
regions I and III) is zero. Thus we calculate the velocity in region I satisfying this
condition and by assuming that the velocity is vertical and uniform. The heat flux
required for the plume is obtained from the boundary layer solution (equation (8)).
Details of the derivations to arrive at expressions for distributions of the various flow
quantities in regions I and III are given in Appendix B.

Fuji (1963) gives expressions for vertical velocity W and temperature T in terms
of the similarity variable & (see Appendix B). The velocity in the inflow region
(region I) = W, is given by the zero mass flux condition:

5,/2
Wy(2e/2 —06,/2) = wdx. (10)
0

The expression for (W?) after taking account of contributions from the plume and
the inflow region becomes
L[ e — 8
(w?) = wrdx 4 %)
A(r/z 0 /L(r
We have assumed that only the vertical component of velocity is present in region
I and that it is uniform. Numerical simulation (§3) of the flow in the cavity shows
that this assumption is reasonable. The distributions of mean temperature and r.m.s.
of the temperature fluctuations are calculated in a similar way. Temperature in region
IIT is given by Fuji’s (1963) solution; in region I it is zero.

w2, (11)
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The plume thickness ¢, required in the above expression is

0

Op Z
Ae

2/5
= ¢ [—10/3H'(0)]"*(Ra,, /8)" /> pr!l/3 (m) ) (12)

2.4. Expressions

The final expressions for the distributions of the various quantities are given below.
The velocity, length and temperature scales for the near-wall flow are

U, = (gBTy)"*(va)"/, (13)
1/3

- ()

Oy =T,. (15)

The expressions for the velocity and temperature (see Appendices) in the boundary
layer region (I) and the region above it are scaled using the above set of scales.
The distributions of the various quantities in the boundary layer are given by

<T>b <Z >5/2 —1/3p —1/2 /OO —7/2
=5 Ra, '"Pr / H(n)n 7/ dn, (16)
T, Zy [ % } "

” 5/2 0
(T :5(Z> [Ra)f”Pr—l/z]/ H(n)n™" dn
Ne

T\% ZW
—25( ) [Ra;mPr_l] [/ H(r])n‘”2 dn} , (17)
ZW h Ne

<U/2>1/2 7 7/4 16 0 5 1/2
e ﬁ(z) [Ra; Py 1] (/ nF (n)dn> , (18)
w w Ne

and in the region above the boundary layer, by

<T>p=<z>_1/5 Ra, /87155 Pr15] [10/3HOF [ hi2)d 19
wh=(7 ) [Ra /8P [10/3H O) /0 ©de, (19)

(1%, (Z e 475 — _ on?s [
Tw%p_(Zw> [(Rai[/S) Pr 6/75}1%1[—10/31%(0)] /th(é)dé

2

z\ 7" —32/75 . —48 6 “
Y L /8)73 /751 [—10/3H'(0 /5[ h d], 20
() [y prsm]rosmon™| [T e o

(w?), oys(Z N\ —16/T5 “
U‘%"—{[—lo/m(on () [Rassrmprr] [7rea:

1
+
1= (46,/Z0(Ras./8)")

6/5 3 2
x( ZZ > [—10/3H’(O)]2/5Pr[(Ra;q /8)—44/75Pr9/75} [ / { f’(i)dé] } 1)
w 0

Note that in equations (16) to (18) the Z dependence of the various quantities is not
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obvious as the lower limit, #,, in the integrals is a function of Z (see equation (5)).
The terms H(n), F'() can be evaluated using the results given in Rotem & Classen
(1969) and h(¢), f'(¢) from those given in Fuji (1963). In general they are functions
of Pr.

The non-dimensional heat transfer, H'(0), occurring in these expressions can be
written as

—H'(0) = 0.3826P %22, (22)

The only input now required for calculation of the profiles of temperature etc. is the
plume spacing or equivalently Ra, . Evaluation of Ra;, is done in the next section.

2.5. Evaluation of plume spacing

We estimate the value of Ra; by making use of the correlation for the Nusselt
number, Nu = 0.069Ra'/3Pr*%™ from Globe & Dropkin (1959) and equate it to
equation (9). Then we obtain

Ra) = 52Pr00, (23)
=51, Pr=60, (24)
=52, Pr=07. (25)

Equation (23) implies that Ra;_ is only weakly dependent on Pr and is approximately
1.4 x 10°; (23) is an important result of the present work. The flux Rayleigh number
based on plume spacing can be written using (8) and (22) as

A
Ra, — Ra (@) 2

) — 6/5 p .0.0692
o A kT, 0.84Ra;%‘ Pr . (26)

It is of interest to calculate the value Ray,, the critical Rayleigh number at which the
boundary layer becomes unstable and turns upwards. On the assumption that the
plume is a result of an instability we may expect Ran, ~ 1000, the critical Rayleigh
number value for fixed-free boundary conditions. We find, however, using equation

(6),

Ras, = 5789Pr "%, (27
=2932, Pr=6.0, (28)
= 6634, Pr=0.7. (29)

The difference may be due to the fact that the critical Rayleigh number of 1000 is
for a linear temperature profile in still fluid whereas we have a nonlinear temperature
profile and a non-zero flow velocity.

For convection on a horizontal plate the boundary layer ‘separates’ at some distance
from the leading edge. We may expect the separation distance to be of the same order
as the plume spacing calculated above. It may, however, be noted that since aligned
plumes are observed just before the separation occurs the two situations are not
the same. Rotem & Classen (1969) obtained the cube root of the critical Rayleigh
number based on the separation length to be around 100. Pera & Gebhart (1973a,b),
through experiments in air, found this value to be 80 while the stability calculations
for Pr = 0.7 show a higher value of 122. Recent experimental work by Kitamura &
Kimura (1995) in water show this value to be 63. All these values are higher than but
of the same order as that given in (27).
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2.6. Relation with Townsend’s scaling

For later reference we now give the relations between the wall scales, Z,,, T, U,, we
are using and the wall scales, Z,, 8,, W,, proposed by Townsend (1959).

Using the definition of kinematic flux, Q,, and the expression for (¢q) (equation (8)),
we obtain

22/ _
p<C> — 0, = (agh) PTH 2T e  H(O)Ra; Py, (30)
Then the relations between the two wall layer scales are
Zy = Z,[=5/3H'(0)]"(Ra;, /8)"*'Pr'V°, (31)
T, = 0,(Ra;,/8)""""Pr**[=5/3H'(0)] " (32)
and
U, = W,(Ray, /8)"*°Pr*/*[—5/3H"(0)]"/*. (33)

The expressions (16) to (21) for distributions of the various quantities may be rewritten
in terms of Townsend’s variables using the above relations.

3. Numerical solution

In the procedure to calculate the flow using the similarity solutions there are a
number of approximations: (i) the boundary layer starts with zero thickness at a
leading edge (figure 3b) whereas it will be closer to a stagnation-flow boundary layer
at the start in the real flow we are trying to model; (ii) we have patched three flows,
namely boundary layer, plume and the downward irrotational flow (region I) which
may not be strictly valid as the Reynolds numbers are not large enough; (iii) we
obtain the critical plume spacing using the Nu—Ra correlation. Of course, the main
advantage of the method is that we obtain analytical expressions for the flow field.
The dependence of the various variables on vertical distance and the Prandtl number
is easily seen.

The numerical solution presented in this section answers two questions. One, how
valid are the approximations listed above? Two, does there exist a critical plume
spacing and what is its value?

We solve for one period of a periodic array of plumes as shown in figure 3c. The
steady two-dimensional Navier—Stokes equations for an incompressible fluid, with the
Boussinesq approximation are

UL
X 0z ’
oo wig) =+ [ 5]
34
[U%E(V-FW?/ZV}/P”:_(?;+{%2XVIZ/+(§ZVZ}+RC{T’ (34)

Here (X,Z) and (U, W) represent the (horizontal, vertical) components of the non-
dimensional coordinate and the velocity, respectively. For our problem, the velocity
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is normalized by «/L and temperature by T,. L is the length of the computational
domain (figure 3c).
3.1. Boundary conditions

The boundary conditions correspond to no-slip on the bottom wall, and symmetry or
reflective conditions on the sidewalls.
The conditions imposed on the bottom and side boundaries are

W(X,0) = U(X,0)=0 (no slip),

T(X,0)= 1.0,

U,Z)=U(L,Z)=0 (no crossflow),

ow

W—O at X=0 and X =1L,

oT

87 =0 at X=0 and X = L,
At the top open wall we assume

ow

—((X,H)=U(X,H) =

7 (X H) = UX.H) =0,

oT

7 at (X,H)=0 if Wis+ve and T(X,H)=0 otherwise.

That is, we assume that the temperature is equal to zero for the fluid coming into the
domain and the temperature gradient is zero for the fluid leaving the domain.

We solve the above system of equations on uniform grids, using Patankar’s (1980)
algorithm modified for pressure to take into account the top zero normal derivative
condition (Van Doormaal & Raithby 1984) (simpLEC algorithm). The numerical code
was validated with the results of De Vahl Davies (1983). The grid dependence was
checked by carrying out the computations for the highest Gr encountered in grids of
sizes 61 x 61, 81 x 81 and 121 x 121. The results changed by less than 1% when the
grid size was increased from 81 x 81 to 121 x 121. We have retained the solutions for
121 x 121 grid.

The solution procedure is as follows. We compute for several values of Grp
(= gBL*T,/v?). The values of L are around the value of plume spacing obtained
in equation (29) for Pr = 0.7 and equation (28) for Pr = 6.0. Depending on the
value of L either a half plume or a full plume is obtained in the solution domain
(the half-plume and one plume flow structures are schematically shown in figure 5).
At some particular value of Gry the flow changes from one-plume to a half-plume.
The numerical solution confirms the hypothesis on which our model is based: there
is some maximum distance between adjacent plumes. Figure 4 shows a typical single
plume structure for Pr = 6.0.

The height, H, of the computational domain was chosen so that asymptotic dis-
tributions of various quantities like average temperature were obtained at the top of
the domain. As far as the near-wall dynamics of turbulent convection is concerned
flow only to a height of about half the plume spacing is likely to be relevant.

Figure 5 shows Nu/L, average heat flux, versus Grk/ * for Pr = 6.0. At transition,
when the solution switches from half-plume to one-plume, the Nu/L value jumps.
Note that Nu/L values at GrlL/3 = 15.36 and 30.72 are same as is to be expected as
the flow structure is exactly the same. For Gri/ ’ < 28 half a plume is obtained in

the domain and for Gri/ ? > 29 one plume is obtained. We choose the domain length
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FIGURE 4. Streamlines (a) and isotherms (b) for the single plume obtained from the computation:
Gr)> =29.24 and Pr = 6.0.
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FIGURE 5. Variation of average heat flux, Nu/L, with non-dimensional cavity length, Gri/ 3, for

Pr = 6.0. The jump in Nu/L at GrlL/ 29 corresponds to transition from half a plume to one
plume in the computational domain.
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FIGURE 6. Same as figure 4 except Gr]L/3 = 54.74 and Pr =0.7.

at which the transition from a half-plume to one-plume takes place as the plume
spacing; for Pr = 6.0, thus

Ra)’ =53 (35)
and using equation (6) we get

Ray, = 4050 (36)
13 — 51 obtained in the

using 7a = 3.0. Compare these values to Ras, = 2932 and Ra;’
previous section.

According to the numerical solution any plume spacing between 0 and 24, is
possible. Our choice of spacing equal to /. is exactly in between these two extremes.
Experimentally a range of plume spacings is observed. In turbulent Rayleigh-Bénard
convection experiments the presence of a larger clear region (no plume) usually results
in the birth of a plume (Theerthan & Arakeri 1994) consistent with the finding of
maximum plume spacing in the present simulation. It may be noted that the variation
in heat transfer rates for plume spacings between 4. and 2/. is only about 25%. As
we shall see in the results below a change in plume spacing also does not significantly
change the profiles of (T'), (T") and the velocity fluctuations.

Similar observations are made for Pr = 0.7. Figure 6 shows the streamlines and
isotherms for Pr = 0.7. Note that the thermal boundary layer thickness and plume
width are larger compared to the Pr = 6.0 case.

Figure 7 shows the Nu/L curve for Pr = 0.7. For Pr = 0.7 we take

Ra)? = 48 (37)
e

and using equation (6) we get
Ray, = 5221 (38)
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FIGURE 7. Same as figure 5 except Pr = 0.7. The jump in Nu/L occurs at Gri/3 ~ 54,

using 75 = 5.2. These values compare well with Ra,, = 6634 and Rai/ 3 = 52 obtained

in the previous section. We use the values of Ra; given above in eqﬁations (35) and
(37) for all subsequent calculations.

4. Results
4.1. Nusselt number

From equation (9) and using the values for Ra;, in (35) and (37) we obtain the Nu—Ra
correlation for Rayleigh-Bénard convection:

(@D 5x2U

Nu= s = ¢ H(O)Ra; " PrifRa" (39)
= 0.073 Ra'? (Pr = 6.0) (40)
= 0.071 Ra'3 (Pr = 0.7). (41)

The Nusselt number values from the numerical solution are slightly lower:
Nu = 0.067 Ra'? (Pr = 6.0), (42)
Nu = 0.0575Ra'* (Pr = 0.7). (43)

The experimental correlation from Globe & Dropkin (1959) gives

Nu = 0.069 Ra'/? P07 (44)
= 0.0788 Ra'’* (Pr = 6.0) (45)
= 0.0672 Ra'? (Pr = 0.7). (46)

It is not surprising that the three Nusselt numbers are not very different considering
that the plume spacing calculated using the Globe & Dropkin (1959) correlation is
very similar to the plume spacing obtained from the numerical simulation. The more
accurate Nu ~ Ra*’ correlations do not give significantly different Nu values in the
Rayleigh number range of our interest.
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For convection over horizontal plates, Nuy, is traditionally based on T,. The
numerical constants in (40) to (43) respectively become 0.184, 0.179, 0.169, 0.145. The
experimental correlations (Fuji & Imura 1972; Kitamura & Kimura 1995) give about
25% lower value of Nuy, compared to the model prediction.

4.2. Plume spacing

In this subsection we compare the experimental values of plume spacing reported in
the literature with the plume spacing predicted by our model. We denote the plume
spacing obtained from experiments by 4,. Plume spacing taken from our numerical
simulation results (35) and (37) and repeated below for the two Pr values are

; = Ra}’ (47)
=53(Pr=16.0) (48)
=48 (Pr =0.7). (49)
The plume spacing, 4., normalized by the characteristic length can be derived as
% — 2" Ra}* [gB(2T\)D*/va] * = 2/ Ra}* Ra~'/? (50)
= 67 Ra"'3 (Pr = 6.0) (51)
= 60 Ra"3 (Pr =0.7). (52)

Note that 4. is independent of D which is to be expected from such a model.

Husar & Sparrow (1968) have visualized planforms of convection in water over
different shaped horizontal heated plates. At the higher Rayleigh numbers the pictures
near the centre of the plate show a cell-like structure. The cube root of Rayleigh
number of the plume spacing, Rai[{ * in this region (centre of the plate) is 70 (their
figure 2b) and 45 (their figure 4a) for the two cases where a clear cell structure is
visible (compare with the value of 53 predicted by the present model). In the other
cases reported there is substantial edge effect and no comparison can be made. In

. 1/3
our experiments (figure 1) Ra 2 = 70.

Tamai & Asaeda (1984) in their experiments measured the average length of the
bursting lines that formed a polygonal cell type structure. From this a representative
horizontal scale for the bursting lines, [, was determined as

1/D =642 Ra; ", 10° < Ray < 10, (53)
I/D =140Ra;"*, 10° < Ra; < 10" (54)

Rajy is the Rayleigh number based on the heat flux, instead of AT. The two Rayleigh
numbers are related through the expression Ra; = Nu Ra. Writing (53) in terms of
Ra, the I/D ~ 121Ra~'/3 compared to 67Ra"/? predicted by our model. Note that [
represents length of the plumes which is generally larger than plume spacing.

In the case of air (Pr = 0.7), Deardorff & Willis (1967) obtained the horizontal
scale of motion by measuring the distance between the peaks of the correlation of
temperature and the vertical velocity (C,,) at mid-height of the cell. They found
that L/D =~ 5.0 for primary intensity maxima and 0.7 < L/D < 1.3 for a secondary
maxima, both at the mid-cell. At higher Rayleigh numbers there is a tendency for
the primary maxima to shift towards larger wavelengths. We believe that primary
maxima, with a higher intensity, are due to the large-scale flow and the secondary
maxima, with a weaker intensity, are due to the wall plumes, i.e. 4, ~ spacing of the
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secondary maxima. For Pr = 0.7 we get from our analysis /./D ~ 0.3 to 1.31 for
Rayleigh numbers in the range (10’ > Ra > 10°) which is close to the secondary
maxima spacing observed by Deardorff & Willis (1967). (In terms of non-dimensional
spacing their value of Ra}: 3 is around 100 for the range of Rayleigh numbers 6.3 x 10°

to 1.0 x 107 covered in their experiments.) It should be noted that the measurements
of Deardorff & Willis (1967) were at the mid-plane of the cell and not near the
wall. The near-wall scales retain their identity at the midplane as evidenced by flow
visualization pictures and the recent DNS by Kerr (1996) at these moderate Ra.

At other Prandtl numbers, equation (23) predicts that the Rayleigh number based
on plume spacing is essentially independent of Pr. Measurements of plume spacing
in experiments covering a wide range of Prandtl numbers are necessary to confirm
this result.

4.3. Mean and r.m.s. distributions

The model can be used to obtain the distributions of mean temperature, r.m.s. of the
temperature fluctuations and r.m.s. of the fluctuations of horizontal and vertical com-
ponents of velocity. In this section we compare the distributions obtained from our
model using the two methods of solution and the measured distributions reported in
the literature. We look at two fluids, namely, water (Pr = 6.0) and air (Pr = 0.7), for
which extensive data are available. All the quantities are non-dimensionalized by the
wall variables U,, Z,, and T, (see (16) to (21)). For Pr = 6.0 the experimental data
cover a range of Ra from 1.28 x 107 to 2.52x 10°, and for Pr = 0.7 the range is 2.5x 10°
to 1 x 10%. The experimental data, except those of Adrian et al. (1986), Prasad &
Gonuguntla (1996) and Townsend (1959), are for Rayleigh-Bénard convection. In the
experiments of Adrian and those of Prasad the top surface is insulating and in those of
Townsend the top is open to the atmosphere. We have not come across any measure-
ments of temperature or velocity distributions for convection over horizontal plates.

Figure 8 shows the comparison between experimental observation and the similarity
calculations, for Pr = 6.0. The similarity solution has two contributions — one from
the boundary layer and the other from the plume, labelled as B and P respectively in
the figure. Figure 9 shows the corresponding plots for the numerical calculations.

The mean temperature distributions (figures 8a and 9a) predicted by the model
using the two methods agree well with the experimental data. The mean temperature
asymptotes to a small non-zero value at large Z /Z,, because of the contribution from
the plume.

The r.m.s. of the temperature fluctuations calculated from the similarity solutions
is shown in figure 8(b). The plume solution will be valid only beyond Z/Z, ~ 15.
The experimental data show a maximum of about 0.15 in temperature fluctuations
at Z/Z, ~ 10. Calculations from the model by both the methods agree well with
the experimental data. Both the peak value and its position are well predicted. It is
clear that the characteristic bulge in the r.m.s. temperature fluctuations is due to the
boundary layer flow.

The nature of the r.m.s. horizontal velocity fluctuations shown in figures 8(c) and
9(c) predicted by the model is different from experimental observations. The predicted
fluctuations go to zero at some distance from the wall, but in the experiments they
go to some non-zero but nearly constant value. The horizontal velocity fluctuations
away from the wall are caused by the large-scale motion which is not accounted
for in the present model. However, these large-scale velocity fluctuations seem only
to play a passive role as far as the wall layer is concerned, at least at moderate
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FIGURE 8. Results from similarity calculation (solid line) for Pr = 6.0. Symbols indicate data
from experiments. (a) Average temperature: O, Ra = 1.28 x 107 (CG); O, 1.1 x 10° (TBL);
A, 2.04x10° (TM); (b) r.m.s. temperature fluctuations: O, Ra = 3.21 x 10% (SG); A, 1.0x 10° (AFB);
00, 1.1 x 10° (TBL); (c) r.m.s. horizontal velocity fluctuations: A, Ra = 1.0 x 10° (AFB); [J, 1.1 x 10°
(TBL); @, Ra =2 x 107 (PG); (d) r.m.s. vertical velocity fluctuations: O, Ra = 2.52 x 10° (GG);
A, 1.0 x 10° (AFB); ®, Ra = 2 x 107 (PG). B refers to the boundary layer part ((16) to (18)) and P
refers to the plume part ((19) to (21)). The experimental results are taken from the references: Chu
& Goldstein (1973) (CG), Somerscales & Gazda (1969) (SG), Adrian et al. (1986) (AFB), Tilgner
et al. (1993) (TBL), Garon & Goldstein (1973) (GG), Tanaka & Miyata (1980) (TM) and Prasad
& Gonuguntla (1996) (PG).

Rayleigh numbers. It seems the addition of an outer velocity and the calculated
inner velocity profile will give the experimentally observed (U?)!/? distribution. As
discussed in the introduction and below, at what Rayleigh number the outer flow
starts affecting the wall region and the related issue of transition to hard turbulence
are still open questions. However, it is probably important to note that Adrian et al.’s
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FIGURE 9. As figure 8 but showing results from the numerical calculation (solid line).
For symbols see figure 8.

(1986) experiments were unsteady, non-penetrative convection in wide layers where
the large scale flow is likely to be different from that in Rayleigh-Bénard convection.

The predicted r.m.s. of vertical velocity fluctuations shown in figures 8(d) and 9(d)
show distributions similar to that observed in the experiments. The smaller values
obtained in the experiments of Garon & Goldstein (1973) can be due to the lower
aspect ratio (~ 2.5). Clearly more experimental data are needed before any conclusion
can be drawn.

Calculations for Pr = 0.7 (figures 10 and 11) show similar trends as for Pr = 6.
The prediction of the r.m.s. temperature fluctuations distribution, surprisingly, almost
coincides with the measurements of Townsend (1959). The vertical velocity fluctuations
compare very well with the measurements of Deardorff & Willis (1967a).

Figure 12 shows the proportions of conductive (—k;0T /0Z) and convective heat
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FiGURE 10. Results from similarity calculation (solid line) for Pr = 0.7. Symbols indicate data from
experiments. (a) Average temperature: O, Ra = 2.5 x 10° (DWa); A, 4.8 x 107 (BTL); V, 1.0 x 103
(T); O, 7.8 x 107 (DWb); (b) r.m.s. temperature fluctuations: O, Ra = 2.5 x 10° (DWa); V, 1.0 x 108
(T); A, 4.8 x 107 (BTL); (c) r.m.s. horizontal velocity fluctuations: O, Ra = 2.5 x 10° (DWa);
(d) r.m.s. vertical velocity fluctuations: O, Ra = 2.5 x 10° (DWa). B refers to boundary layer part
((16) to (18)) and P refers to the plume part ((19) to (21)). The experimental results for air are taken
from Deardorff & Wills (1967a) (DWa), Belmonte et al. (1993) (BTL), Deardorff & Willis (1967b)
(DWD) and Townsend (1959) (T).

transfer for Pr = 6.0 from the numerical computation. It is clear, for Z/Z, > 15
almost all of the heat transfer is due to convection by the plumes. Further away from
the wall at least part of the convection will be due to the outer-scale eddies. This
picture is similar to wall-bounded turbulent flows where momentum transfer switches
from the purely viscous at the wall to the ‘large’-scale turbulence via the intermediate
sublayer vortices.
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FIGURE 11. As figure 10 but showing results from the numerical calculation (solid line).
For symbols see figure 10.

A major drawback of the present model is that it fails to predict the Ra*’
dependence of Nusselt number in Rayleigh-Bénard convection. Any improvement of
the model will have to await a clearer understanding of the outer flow—inner flow
coupling. One way to bypass the issue is to use heat flux as the independent variable
instead of the temperature difference, that is to write expressions (16) to (21) in terms
of Townsend’s variables using (31) to (33). Figures 9 and 11 redrawn in terms of
Townsend’s variables are shown in figures 13 and 14. The near-wall distributions of
the various quantities for a given Ra may then be obtained using the Nu ~ Ra*’
correlation for Rayleigh-Bénard convection and appropriate correlations for other
configurations. Comparison of figures 13 and 14 shows the Pr dependence for the
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FIGURE 12. Proportions of conductive (—k; 0T /0Z) and convective heat transfer obtained from
numerical simulation for Pr = 6.0.

distributions of the various quantities. The plume spacing in terms of heat flux is
given by (26).

In all the above calculations we have assumed the plume spacing to be constant =
/c given by the relations (35) and (37). In experiments a range of plume spacings are
observed. To get an idea of the effect of plume spacing we plot distributions of the
various quantities for a range of plume spacings between A. and 24. for Pr = 0.7
(figure 15). As noted in §3 the variation in heat flux is about 25%. The effect is largest
for the r.m.s. of vertical velocity where the variation is about 50%. However, the
variations in the various quantities due to plume spacing change is about the same
as the experimental scatter.

5. Discussion

In spite of the real flow field being unsteady and three-dimensional the simple two-
dimensional model appears to capture most of the near-wall dynamics of turbulent
natural convection over a heated horizontal surface. In particular, the plume spacing
seems to be determined by a criticality condition, and both the boundary layer and
plume regions need to be considered to describe the dynamics. The model may be
considered to be a more accurate method of calculation than the more simple minded
approaches of, say, equating the buoyancy and viscous forces as was done in the
past. The model may be extended by considering the flow to be an ensemble of
randomly oriented line plumes (akin to the ensemble of randomly oriented vortices
for models of isotropic turbulence) instead of the parallel array of plumes we have
considered. With such a model higher-order statistics and two-point correlations can
be calculated.

It is useful to estimate the range of Rayleigh numbers under which our model is
likely to be valid in Rayleigh-Bénard convection. The wall layer dynamics seem to
extend to a non-dimensional height Z/Z,, ~ 50 or equivalently a Rayleigh number
based on height to about 1.25 x 10°. Thus our model, which assumes plumes from
the opposite wall have no role to play, may be expected to be valid when the non-
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FIGURE 13. Figure 9 redrawn in terms of Townsend’s variables.

dimensional distance between the plates D/Z,, > 100. D/Z,, = 100 corresponds to
Ra = 2 x 10°. Thus it is also clear that effects of viscosity are felt in the centre of
the cell even at Ra as high as 10°. Horizontal velocity fluctuations exist across the
height of the convection cell. These fluctuations in the core region away from the
plate are presumably a result of interaction of plumes from the opposite walls and
from general turbulent mixing. These fluctuations are felt right up to the wall but as
noted earlier seem to play a passive role in the near-wall dynamics.

As the Rayleigh number increases the outer velocity scale W. increases with
respect to the inner velocity scale U,,. Thus at very large Rayleigh numbers the outer
flow should start influencing the near-wall dynamics. When this will happen is still
unresolved. As mentioned earlier, most of the experiments at high Ra(> 10°) have
been in cells with aspect ratios of order one. The geometry then imposes a single
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FIGURE 14. Figure 11 redrawn in terms of Townsend’s variables.

large-scale roll which sweeps the near-wall plumes. Experiments at high Rayleigh
numbers are needed to tell us whether energetic coherent rolls scaling with the height
of the cell will persist even at high aspect ratios. However, we expect that our model
will be valid at least for Rayleigh numbers in the range of 107 to 10°.

Flow structures away from the wall layer in convection over a single horizontal
surface and in Rayleigh-Bénard convection will be different as shown in figure 2. In
the former there will be no impinging plumes from the opposite wall and large-scale
flow will be that due to the turbulent boundary layer and the turbulent plume(s).
On finite plates there is a distinct edge effect with longitudinal rolls extending some
distance normal to the edge (Husar & Sparrow 1968; Kallol Bera 1993). The flow
away from the edges and near the surface, however, consists of line plumes and our
model should be valid there.
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FIGURE 15. The various distributions plotted for a range of plume spacings
between . and 22, for Pr = 0.7.

Another unresolved issue, briefly brought out in §4.2, is the appropriate Prandtl
number dependence of the various scales. It would be desirable to obtain Prandtl-
number-independent distributions of average temperature, temperature fluctuations
and the velocity fluctuations. We do not know whether this is indeed possible. For
example expressions (16) to (21) for distributions of the various quantities in the
boundary layer region and in the plume region show different and complicated
Prandtl number dependences. Experiments with a large range of Prandtl numbers are
needed to resolve some of these issues and also to ascertain whether Ra;, is indeed
nearly independent of Pr as predicted by the model.

The model and the analytical expressions provide a natural basis to obtain ‘wall
functions’ to use in turbulence models to calculate natural convection flows over
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horizontal surfaces. It will also be useful for subgrid modelling near the wall in
large-eddy-simulation (LES) calculations. Near-wall distributions of kinetic energy
(k), production of k (which will be due to buoyancy), dissipation of k and dissipation
of temperature fluctuations may be calculated using the model.

It is of interest to point out here that the line-plumes structure is also observed
in convection over the Earth’s surface under ‘still’ (no wind) conditions. Of course,
in this case the flow in the boundary layers will be turbulent. Extending the present
model with the molecular diffusivities replaced by the turbulent (eddy) diffusivities is,
an attractive, but perhaps far fetched, proposition. Qualitatively, however, the flow
appears to be similar to the model we have proposed. It would be interesting to check
whether in the atmospheric convection also the plume spacing is about five times the
boundary layer thickness.

6. Conclusions

We have proposed a model which describes the near-wall dynamics of turbulent
natural convection over a horizontal surface at moderate Rayleigh numbers. The
model consisting of laminar boundary layer and an array of steady line plumes
reproduces the distributions of mean temperature, r.m.s. temperature fluctuations and
r.m.s. vertical velocity fluctuations close to the wall, reasonably well. The deviations
observed in the case of r.m.s. horizontal velocity fluctuations is due to the large-
scale flow present in the experiments and which is not accounted for in the present
model. However, as indicated earlier, these large-scale flows play only a passive role
as far as the wall layer events are concerned, at least at these moderate Ra. The
average plume spacing predicted by the model is in reasonable agreement with the
limited experimental data. More experiments are required to check the prediction that
Rayleigh number based on plume spacing is around 1.4 x 10°, nearly independent of
Prandtl number.

Appendix A. The boundary layer

Rotem & Classen (1969) give the distributions of horizontal velocity F'(y) and
temperature H(n) where 1, the similarity variable, = (Z/14.) Grl’(x/ 1275, X is
horizontal distance from the leading edge and Z is vertical distance.

The horizontal component of velocity is given by

v X 1/5
U= <;) Ra;’ Py ()) F (n); (A1)

F(n) is the stream function.
The r.m.s. of the horizontal velocity fluctuations using (2) is

VA 7/4 0 1/2
(U2 = J3(gB T, Ral Pr/® () ( / r/“’/zF’z(n)dn> . (A2

c Ne

In the above equations 7, is a function of Z and Pr and the rest of the quantities
are either constants or functions of Pr. The subscript b is used to indicate the
contribution from the boundary layer. Note that the average horizontal velocity is
zero with contributions from the two boundary layers cancelling each other exactly.
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The mean temperature profile in the boundary layer is obtained as

5/2 0
Tr=s() ralee [CHon e (A3)
He

T, A

and the r.m.s. of the temperature fluctuations is obtained from

7 5/2 i 0 1/
(T%), =T} 5(i> Ra;” pro? ( / Hz(ﬂ)n‘mdn)
c Ne
-25 <A> Ra; Pr~! U H(n)n‘mdn] ) (A4)
4 Ne

Here, H(y) = 0 = T /T, is the non-dimensional temperature. The first part on the
right-hand side is the square of the r.m.s. of the total temperature and the second
part is the square of (T').

The integrals for (U?)'/2, (T), and (T"?)'/? are evaluated numerically after finding
a fit for the similarity functions, H(xn), F(n),... etc. that appear in the integrals.
The limit oo is replaced by 75,4, the edge of the boundary layer. This replacement is
equivalent to the integral with respect to X not starting at 0 but at the edge of the
boundary layer for any Z.

2

Appendix B. Plume
The vertical velocity in a laminar buoyant two-dimensional plume is given by (Fuji

1963
: W (&) = (&) Z'7 (gp0)*v'7, (B1)
where f'(&) is the similarity function for the plume region and
X
¢ =Grl/s (Z> ; Gr.= <gv2> 0,2, (B2)
Now we obtain the relation between dé and dX as,
o\ 1/
dé = <ng ’) 75 dX. (B3)

In all the above expressions, Z is measured from the virtual origin of the plume.
Calculation of the virtual origin of the plume is done by equating the mass flow rate
in the plume to the combined mass flow rate in the two boundary layers at the points
where the boundary layers turn to form the plume (see figure 3b). A brief calculation
is presented below.

In the calculation of the plume characteristics we require a quantity (see equation

(B1))

_ O
0, = prens (B4)

Here Q; is the heat flux per unit plume length. In our case Q; = (g)A., i.e. the heat
flux from the two boundary layers on either side of the plume.

Substituting (g) (equation (8)) and A. (equation (6)) in the expression for Q; and
then in 0, (equation (B4)) we obtain

0, = [-H'(0) Ray” Pr=>"n 1 T, (B5)
=%(Pr)T,, (B6)
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%(Pr) is the quantity in the bracket in equation (B5) and is a function of Pr.
Substituting in equation (B 1) and taking the average with respect to X,

1 Ae/2 )
(W) =ZP BTy e s | f(©)dX, (B7)
where
q=ars (22 (B8)

0, 1s the plume width at any Z. Expanding % (equation (B 5)) and using equation (6)
we get

z \" : s pessy [© o
W) =(25) T SO Ra 3R [ @ B9
c 0
The r.m.s. velocity is obtained in a similar way. Squaring (B 1) and taking the average,
we obtain
1 w2
(w?) = Zz/s(gﬁTw)“/S(f“/sz/sm A& dx. (B10)
(73 0

Substituting for dX in terms of d&, and for ¥ we get

I 11 U ]Wl (7/ lta/,. 0 d

Now we calculate the virtual origin of the plume. The mass flow rate in the
boundary layer is given by

mb:p/deZ. (B12)
0
Using (A 1) and (3),

My
m = pvGr!” [ F G dn (B13)
0

where 7, defines the edge of the velocity boundary layer. It is equal to 6 for Pr = 6.0
and 7 for Pr = 0.7 (Rotem & Classen 1969).
The mass flow rate in the plume at a vertical location Z from the virtual origin is
given by
Je)2
m, =p wdX. (B14)
0
Using (B 1) and (B 3), (B 14) becomes

7\ , s [Rax 1/10 B & /
m, = 2p <z /2> GrYSv [<20H'(0)] Y {’13} Pr 3/10/0 f(&de (B1S)
c A

The virtual origin is obtained by equating 2m, = m,. If Z/3/. obtained is greater
than A./32. (= [Gra,/n3]~"/%), then the virtual origin is below the horizontal surface.
Calculation shows that the virtual origin lies about one-fiftth of a boundary layer
thickness, A./ %ic above the surface. Therefore, we assume the virtual origin to lie on
the surface.
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The temperature distribution (Fuji 1963) in the plume is

gh\ "’
T = <v2) 0,323 (&), (B 16)

where h(&) is the similarity function for temperature.
Substituting 6, = ¢ T,, (equation (B5)) we obtain the average temperature

—1/5 2e)2
(T) = (gf> 13572 [ e ax. (B17)
v 0

Using (B 3) we obtain

—1/5 p&.
<T>:TWGr;2/5(€3/5<f/2> /Oh(é)dé. (B18)

Substituting for Gr. (equation (6)) and % (equation (B 5)),

Z -1 /5 é('
(1) = TulRar 3 et (50) 0 [Theee w9
¢ 0
The r.m.s. temperature is obtained in a similar fashion by squaring the temperature
distribution (equation (B 16)), averaging and taking the square root:

7 -2/5 &, 1/2
(T2 = Tul(Ras 97 P o™ (Z0) ([ o)
. /“c/z 0

(B20)
Then the r.m.s. of the temperature fluctuations is obtained using the relation

(T?), =(T* —(T)?, (B21)

the subscript p denoting the plume contribution.
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